Roll No.

Total Pages : 3

BT-4/J-22

44151

DISCRETE MATHEMATICS Paper–PC-CS-202A

[Time : Three Hours]

[Maximum Marks: 75]

Note : Attempt *five* questions in all, selecting at least *one* question from each unit.

UNIT-I

- 1. (a) Using mathematical induction, prove that n^3+2n is divisible by 3.
 - (b) Prove that $(A \cup B)'=A' \cap B'$
- 2. (a) Construct the truth tables for the following statements:
 - (i) \neg (p \land q) \lor (\neg r).
 - (ii) $\neg (p \land \neg q) \lor (r)$.

(b) If set A is finite and contains n elements, prove that the power set of P(A) of the set A contains 2^n elements.

UNIT-II

3. (a) Consider the relation

 $R=\{(a,b) | length of string a= length of string b\}$

on set of strings of English letters. Prove that R is an equivalent relation.

(b) Show that the inclusion relation ⊆ is a partial ordering relation on the power set of a set.

- 4. (a) Given A={1, 2, 3}, B={a,b} and C={l, m, n}. Find each of the following sets:
 - (i) $A \times B \times C$
 - (ii) $A \times C$
 - (iii) $B \times C \times A$
 - (b) Define Lattice. Prove that D_{36} the set of divisors of 36 ordered by divisibility forms a lattice.

UNIT-III

- 5. (a) Prove that function $f: N \rightarrow N$ defined as $f(n) = \{$
 - n + 1, if n is odd

n - 1, if n is even
}

is inverse of itself.

- (b) Solve: $a_n+a_{n-1}=3n2^n$, $a_0=0$, using Generating function method.
- 6. (a) Let $f: Z \to Z$ be defined by $f[x]=3x^3-x$. Is this function:
 - (i) One-to-one?
 - (ii) Onto?
 - (b) There are 280 people in the party. Without knowing anybody's birthday, what is the largest value of n for which we can prove that at least n people must have been born in the same month?

UNIT-IV

- 7. (a) Prove that the identity element in a group is unique.
 - (b) Let G be the group and $a \in G$. Prove that the cyclic subgroup of N(a) ={x $\in G : xa=ax$ }.
- 8. (a) Let P be a subgroup of a group G and let $Q = \{x \in G : xP = Px\}.$ Is Q a subgroup of G?
 - (b) Let f: (R,+) → (R₊, ×) is defined as f(x)= e^x for all x in R, where R → set of real numbers and R₊ → set of positive real numbers. Prove that f is a homomorphism. Is f an isomorphism?